阅读本书的读者,大多数在做学生的时候就熟悉欧几里得几何学的宏伟大厦。你们或许会以一种敬多于爱的心情记起这座伟大的建筑。在这座建筑的高高的楼梯上,你们曾被认真的教师追迫了不知多少时间。凭着你们过去的经验,谁要是说这门科学中的哪怕是最冷僻的命题是不真实的,你们都一定会嗤之以鼻。但是如果有人这样问你们,“你们说这些命题是真实的,你们究竟是如何理解的呢?”那么你们这种认为理所当然的骄傲态度或许就会马上消失。让我们来考虑一下这个问题。几何学是从某些像“平面”、“点”和“直线”之类的概念出发的,我们可以有大体上是确定的观念和这些概念相联系;同时,几何学还从一些简单的命题(理)出发,由于这些观念,我们倾向于把这些简单的命题当作“真理”接受下来。然后,根据我们自己感到不得不认为是正当的一种逻辑推理过程,阐明其余的命题是这些公理的推论,也就是说这些命题已得到证明。于是,只要一个命题是以公认的方法从公理中推导出来的,这个命题就是正确的(就“真实的”)。这样,各个几何命题是否“真实”的问题就归结为公理是否“真实”的问题。可是人们早就知道,上述最后一个问题不仅是用几何学的方法无法解答的,而且这个问题本身就是完全没有意义的。我们不能问“过两点只有一直线”是否真实。我们只能说,欧几里得几何学研究的是称之为“直线”的东西,它说明每一直线具有由该直线上的两点来唯一地确定的性质。“真实”这一概念与纯几何学的论点是不相符的,因为“真实”一词我们在习惯上总是指与一个“实在的”客体相当的意思;然而几何学并不涉及其中所包含的观念与经验客体之间的关系,而只是涉及这些观念本身之间的逻辑联系。